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An Automatic Phase Control System is analyzed to deter-

mine its response to frequency modulated signals and narrow-

band Gaussian noise. Emphasis is placed on the System's re-

sponse to frequency ramp modulated signals. In constradis-

tinction to previous analyses, the assumptions of a lineariz-

ed system and of a S/N ratio greater than unity were not

made.

The response of the System to an FM signal is obtained

using a perturbation technique and pertuxbing about the solu-

tion to the nonlinear pendulum problem. A piecewise-linear

solution is also presented and used to extend the class of

solutions obtainable when using the perturbation technique.

It is shown that the perturbation technique results in an ex-

cellent approximation to the actual System response which vap

determined experimentally. However, the technique is only

valid when the System is underdamped. The piecewise-linear

technique does not result in as good an approxi nation, but

it can be used when the System is critically-damped, or over-

damped. Utilizing these techniques, the response of the APC

System to a frequency ramp modulated signal was obtained, the

initial conditions required for the System to synchronize to

a frequency ramp modulated signal determined, and the use of

the System as an FM demodulated discussed in detail.

-2-



The response of the Automatic Phase Control System to

narrow-band Gaussian noise is next obtained. An iteration

technique is used and convergence is proven. It is shown

that the APC System responds to noise as an open-loop System

rather than as a closed-loop System. The phase jitter pres-

ent in the output of the System is shown to represent a non-

stationary Gaussian distribution.

The last section of the dissertation discusses the re-

sponse of an Automatic Phase Control System to FM Signals em-

bedded in no.se An iteration technique is used and a first

iteration taken. The results obtained from this first approx-

imation yield a qualitative understanding of the effect of

the System parameters on the probability of synchronizing to

a signal when the input S/N ratio is much less than unity.

This discussion is then extended experimentally. It is shown

that a critically-damped System can tolerate a lower S/N

ratio than an underdamped or overdamped System.

-3-



Chapter 1

INTRODUCTION

1.1 Statement of the Problem

The Automatic Phase Control (APC) System is the basic

element in many communication 1'I and radar1"2 systems. The

resultant device is capable of locking to an accelerating

target whose return signal is deeply embedded in noise.

The APC System is analyzed in order to determine its

response to frequency modulat'd signals and noise. Emphasis

is placed on frequency ramp modulated signals. The system

can be described by a second-order nonlinear differential

equation. This equation also represents the response of a

pendulum to an applied force and a nonlinear friction force.

1.2 Summary of Prior Work

In previous analyses the phase plane technique was used

to obtaim.,the response of the APC System to a frequency ramp

modulated signal. 1 3 This technique helped to provide a

qualitatie understanding of the problem. Quantitative re-

sults have been derived by linearizing the differential equa-

tion and solving the linearized problem.1'4 The results ob-

tained in this manner were highly restrictive. They were

valid only when the frequency and phase of the incoming sig-

nal were s .milar to the initial frequency and phase of the

APC System. (This is analogous to the motion of a pendulum

whose swing is restricted to small angles.) In addition,

the assumption of a linearized system required that the sig-

nal-to-noise (S/N) ratio of the incoming signal (and associ-

ated noise) be much greater than unity's' and that the noise

be limited.



1.3 Summary of Results Obtained

In contradistinction to the analyses performed by pre-

vious investigators, the assumptions of linearizing the sys-

tem, limiting the noise, and requiring that the S/N ratio

be greater than unity, will not be made.

Chapter 2 describes the response of an APC System to

an FM signal, An exact solution to the nonlinear problem is

obtained using a perturbation technique. Perturbations are

taken about the solution to the pendulum problem The result

obtained is useful in obtaining solutions to the problem when

large phase errors exist A piecewise-linear analysis is

also presented, to extend the results obtained using the per-

turbation technique.

Chapter 3 discusses the response of the APC System to

noise, when no signal is present Using an iterative proce-

dure it is shown that the APC System acts as an open loop de-

vice to noise.

The response of an APC System to an FM signal and noise

is discussed in Chapter 4 An iteration technique is used to

obtain qualitative results describing the operation of the

System when the S/N ratio is much less than unity These

results are then extended experimentally in Chapter 5

Chapter 5 presents some experimental results which veri-

fy the theory presented in this dissertation

1.4 Mathematical Formulation of the Problem

A typical APC System is shown in Fig. 1 1 If no noise

is present, the input signal

t
ec(t) : S sin 0 (t) S sin(w t &a f e(,)d.) (1,4.1)

0

and the output of the voltage controlled oscillator (VCO)
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t
ev(t) - cos 2(t) - cos(Wat + G f e°(W)dX) (1.4.2 )

are multiplied in the phase detector. The phase detector

consists of a multiplier followed by a low-pass RC filter.

it is assumed that the bandwidth, wo , of the RC filter is

much larger than the difference frequency, , " $- , obtained

when multiplying ec and ev . The resulting difference fre-

quency signal

ed(t) - G s sin(Oa - 01

t t
- G 8 sin(fAt + a f. e0 (A)dX - a f em(3 )dA) (1.4.3)

represents the input to the filter. In the above equations

flmu -'W
2 1

G is the gain of the phase detectorI

0 is the sensitivity of the voltage2

controlled oscillator (rad/sec/volt),

and ciem(t) is the frequency modulation of the input signal.

The voltage output of the filter,

t

e0 (t) = f h(t - X)ed( )d% (1.4.4)
0

corrects the frequency of the VCO, (h(t) is the impulsive re-

sponse of the filter). Thus the frequency of the VCO attempts

to follow the instantaneous frequency of the input signal.

When noise is present, the input voltage

e (t) - N(t) + a sin @(t) .(1.4.)

-7-



The frequency of the VCO still attempts to follow the instan-

taneous frequency of the input signal, $ , but is hindered by

frequency jitter caused by the input noise.

Due to practical limitations, the APC System is usually

operated at an IF frequency. To obtain the IF frequency, the

incoming signal (and associated noise) is heterodyned using

a local oscillator and passed through an IF filter, having a

center frequency, w 2, which is the same as the initial fre-

quency of the VCO. It will be assumed throughout this disser-

tation that the single tuned IF filter exhibits a completely

flat response to all input signals. The frequency of the in-

put signal, $, . need not be the same as the initial frequency

of the VCO, w 2 It is however, assumed that the bandwidth of2

the IF filter, a , is always much greater than II " -w .
The incoming noise is initially white Gaussian noise. After

having been passed through the IF filter, the noise appears

at the input of the APC System as narrow-band Gaussian noise,

with a center frequency, w 2, and a bandwidth, a

-8-



Chapter 2

THE RESPONSE OF AN APC SYSTEM TO AN FM SIGNAL

2.1 Introduction

The type of filter used qreatly influences the perform-
ance of an APC System. It limits the frequency range of op-

eration of the system and restricts the type of input signals
to which it can be synchronized.

If no filter is used, the response of the system shown

in Fig. 1.1, to an input signal, e c(t) , is given by

4 wn sin 0 fl - ce(t) (..1)dt

where 0 PtO -0

P 1

and n G 3

Equation (2.1.1) can be normalized by letting

'I n.("ht

"n nOw

and an : /wn

Equation (2.1.1), then can be written as

At -," sin a '- n " n e (T) (2.1.2)
n n



The solution to this equation can be easily obtained if

an - 0 ; then

€(r) = -2 tan _ (2.1.3)n

I + ( l n
n

l-e n

In order that O(T) be a real function,

In n I< .2..)

It should be noted that this result can be obtained directly
from Eq. (2.1.1). If n = 0 ,

sin * = n • (2.1.5)
(steady state) &n

Equation (2.1.5) also requires that 11 n I< I Therefore,

the initial frequency error, a , must be less than the over-

all system sensitivity, wn , if the system is to synchronize
to the frequency of the input signal. If

anem(T) < < an (2.1.6)

O(x) can be obtained using a perturbation technique. If

ramp modulation is applied,

em(T) = r . (2.1.7)

-10-



This system is incapable of synchronizing to a frequency ramp

modulated signal.

If an RC low-pass filter with the transfer function

2 -(2.1.8)

1+ Ma

is used, the response of the system of Fig. 1.1 to an output

signal, ec (t) , is*'1

+ Ma S1t + mawn ain 0 r wa _ u(t) (2.1d9)
ta dadtt (2.1 9)

This system represents the equation of a pendulum with an ap-

plied force and a linear friction force.

If a t 0 , the steady state condition is

sin * "fn • (2.1 10)
(steady state) n

This again represents a system where ! an I . This system

is incapable of synchronizing to the input signal if ramp

modulation is applied (i.e., e (t) t). "

To enable the system to synchronize to a signal whose

frequency varies linearly with time, when the signal is em-

bedded in noise, an active phase lag filter as shown in Fig.

2 1 is employed.' Using this filter in the system shown in

Fig. 1.1, the second-order nonlinear differential equation

describing the performance of the system becomes

de (t)
,4f+ On COS dt +wn a sin 0 -. -a dt " "

dt nn dt
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where = R/R,

wa = /RIC2, rad/sec,

wn - G G S rad/sec,

O - 0 - 0 rade
2 i

-Wa - . rad/sec

and aem(t) represents the frequency modulation of the input

signal. It should be noted that the loop gain (or sensitivity)

of the system, wn, can be considered equal to unity, and its

actual magnitude considered as part of the magnitude of the

parameters of the phase lag filter.

Equation (2.1.11) can be simplified and written in nor-

malized form:

+ C coo 0 + sin *--a d- (2.1.12)
d dr drF

where r = - t
a n

a = /nwnwa

ana
and 0 n = al/ n "

If F_ a :0 0, this equation becomes the well-known pendulum

equation. If 'a' is not zero, the equation represents the

motion of a pendulum with an applied force. The presence of

the term, c-coso8 represents a nonlinear friction force,

which damps the motion of the pendulum as long as 101 < 

When I !> j , the coefficient of friction, r coo 0 becomes

negative.

Before proceed1ig to an analytical solution of the prob-

lem, it is useful to qualitatively consider the operation of

the system using the results of a phase plane analysis.

-13-



2.2 Phase Plane Analysis
2 *3

If frequency ramp modulation is present,

dem

a d = constant.

de
To simplify the notation used, d- is chosen equal to unity.

Equation (2.1.12) can be rewritten as

0" + C coos 01 + sin 0 - -a , (2.2.1)

where Of d'/dT

and the equation of constant phase is therefore,

a - a + sin 0 + c P cos (2.2.2)
dO p

where p r

If the input signal, ec(t), is unmodulated (a - 0), a

phase plane analysis shows that locking will always eventually
occur. Depending on the initial conditions, locking will oc-
cur with the final phase error 0, 27, 4w,..., 2nw . The time

required for locking to occur clearly increases as the final
phase error increases.

It is seen from sq. (2.2.1) that when the system is

synchronized to an unmodulated input signal, the frequency

error is zero. It has been shown " 4 that thmaxumis permissale

initial frequency error, nn , (when the initial phase error (*)
is zero) for locking to occur (with a final phase error,

* - 0), increases as the damping coefficient, c , increases.
This is illustrated in Fig. 2.2. It would seem from fig. 2.2

-14-
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that to insure locking about - O, e should be made as

large as possible. The APC System, however, was designed to
operate under conditions involving a signal embedded in noise.
As e is increased, the noise emanating from the filter also
increases, Thus, a compromise must be made.

As 'a' increases, the set of initial conditions for
which locking will occur, decreases. From Eq. (2.2.1), it is
seen that at steady state, sin 0 = -a . Therefore, if a > i,
* does not exist. To insure locking, 'a' must be less than
unity. Even when 'at is less than unity, locking cannot al-
way, be achieved.

The frequency error 4(t) is given by,

0(t) - (t) - ;1(t) . (2.2.3)

For the case of a frsquency ramp,

1.(t) - W1 + at .(2.2.)

It is seen that

$(t) = $ (t). - - at (2.2.5)

When t - 0 , (t) = a . Then, if n > 0 , even if P (t)
does not change rapidly, 4(t) will eventually go through zero.
If, however, 0 < 0 , (t) must follow rapidly and overtake
01(t) to cause 0(t) to go through zero. It is apparent
that 0(t) going through zero need not be a sufficient con-
dition for locking to occur. It is, however, a necessary con-
dition.

Figure 2.3 is a sketch of a phase portrait when c =42F
and a !A /4 . It is seen from this figure that a limit cycle
of the second kind exists. If the initial frequency error,

n is more negative than the frequency of the limit cycle,

-16-
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locking will never occur. If, however, the initial frequen-

cy error, 1n I lies above the limit cycle, locking will al-

ways occur In particular, if the initial frequency error is

greater than nB locking will not occur when the phase error,
S, is less than . , but the system will eventually lock

As 'a' increases the limit cycle becomes less negative.

If, a > 1/2 , the limit cycle no longer exists. The effect

of this on the system performance is illustrated in Fig. 2.4

for a = v3/2 . The maximum negative value of n that will

allow locking has decreased. In addition, if ln > 0 , lock-

ing still may not occur. A typical divergent path is shown

for the case nn = n0 . However, if nn is even larger than

no , such as On = 01 it is possible that locking may occur

about 0 n=. Thus, the frequency axis of the phase plane: 3 "
(corresponding to zero phase error) can be broken into alter-

nating "bands." if the frequency error is more negative than

nA , no locking will occur. If the freqoency error is bound-

ed by

"A < On < n , (2.2.6)

the system will synchronize to the input signal and the re-

sulting phase error will be

S= -sin- (2.2.7)
(steady state) 2

If the frequency error is bounded by nB and an upper-bound

nC , so that,

11B n~ < n (2.2.8)

the system will not synchronize to the incoming signal. If

the frequency is bounded by nC and some upper-bound %

-18-
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the system will lock and a resultant phase error

0 m-sijL1 + 2 7 5-7- (2.2.9)
(steady state) 2 3

will occur.

When noise is present, it can easily push the frequency

error from a stable band to an unstable band. Thus, when op-

erating with noise, 'a' is adjusted to be less than 1 . This

requires that the slope of the frequency ramp, a , satisfy

the inequality

a< 1(wawn) (2.2.10)

This result is significant in as much as it sets a lower bound

on wamn . In Chapter 4, it will be shown that Woamn should

be reduced in order to reduce phase jitter in the output, e.

Equation (2.2.10) therefore limits the amount by which the

phase jitter can be decreased.

it is also of interest to determine the time required

for the system to lock, given a set of initial conditions.

To determine the time required to move between two points on

a path in the phase plane, the equation of the path is requir-

ed. In any given problem, an approximate path can be found,
'5

and the time, T , can be found:ae

Tab f 01 (2.2.11)
a

As previously noted, if a - c = 0, Eq. (2.2.1) reduces

to the pendulum equation. In this case, the equation of con-

stant phase Eq. (2.2.2) can be integrated. If, when * - 0,
0 -(0 M1n 1 0 becomes

a 4 2(k) sin (2,2.12)

-20-



and ( P1

T ab (f a 2 (2.2.13)

The time, I , that it takes a pendulum to move * of a cycle
is* 7

- K(ka) (2.2.l4)

where K(kM ) is the complete elliptic integral of the first

kind. When nn < 2 ,

n= ) sin 2  ) . (2.2.15)

I f ax < 1280, then Inn I< 1.8 . The time, T , (in seconds)

required by the pendulum to complete a full period is bounded

by

2wr < (an) T < 9 (2.2A16)

When Sn > 2 , the motion of the pendulum is no longer

bounded. The pendulum now continually rotates in one direc-

tion. If some damping were present, the path of the pendulum

would be perturbed, and the pendulum would rotate until, when

0 - 2n7r , the velocity of the pendulum, n' became less than

two.

The concept of perturbing the motion of the pendulum by

a friction force and an applied force will be discussed in de-

tail in the following section.

2.3 A Perturbation lutiRn2 "

The equation describing the APC System can be rewritten

in the formt

*" + sin 0 . -C COS 0 ' - ae (2.3.1)

-21-



If e and 'at are each less than unity, a solution using

the perturbation technique can be found. For locking to oc-

cur, it was previously shown that tat should be less than
1
-. No such fundamental restriction on e exists. As pre-

viously discussed, e should not be too large as it increases

the noise in the system. Although choosing e less than

unity restricts the range of usefulness of the solution, the

solution obtained using the perturbation technique is valid

even when the phase error, O(T), and the frequency error

oo(i) are large. This should be contrasted to the results

that can be obtained using a linear analysis,2'e where, al-

though c can take on any value, the solution is restricted

to small values of 0(T).*

A solution to Eq. (2.3.1) can be written in the form:

O(T) . 0o(T) + C 0(T) + a 0 (T) + 0 (62,alca) . (2.3.2)

Substituting Eq. (2.3.2) into Eq. (2.3.1) and neglecting sec-

ond order terms, we gets

01 + sin 0o = 0 (2.3.3)

sin 0 1= frL0!2 cos 0 dT (2.3.4)

and

,(0 f ()%(T)dT . (2.3.5)

0 0

*See Appendix A.
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Without any loss of generality, the solution to Sq. (2.3.1)

can be simplified if the initial conditions ares

0(o) a o - (O) (2.3.6)

and

0,(o) = - 4"k 0 (0) (2.3.7)

and 1(o) a t(o) .,(o) 0;(o) . 0 (2.3.8)

where k2 sin"(! I) (2.3.9)

equation (2.3.3) is the equation of a pendulum having

an initial velocity, "n . but no initial displacement. As

seen previously, to keep the motion of the pendulum bounded,
i.e.,

< '00 <(2.3.10)

the initial velocity of the pendulum, 0 , is

1%0)I OIn < 2 .(2.3.11)

The solution to Sq. (2.3.3) is given by

0o1 () - 2 sin 1(C4ynr) . (2.3.12)

Iquation (2.3.4), Sq. (2.3.5) and the differential equations

resulting from second-order terms, are all first-order linear
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differential equations, with time varying coefficients. The

solution to this type of equation is well known.

The phase error, 0(i) , is then

O(T) = 2 sin viksn) (2.3.13)

C (2cn Vd-r (1 - k2), + (2k 2 - l)Z(amnT.k 2 j + 2k2SnTCn~dn
(3 47) cn2'r

gnu -dua
IX 1 + O(C 2 ,a ea)

k 0cn xJ

where E(amT, k2 ) is the elliptic integral of the second

kind.. 10

The elliptic functions sni and cnT are periodic

and can be represented by a Fourier series.
2 "11

2= sin x a sin 3x 1 2 in +. ."1(2.3.14)
n A= K(k a) 11 - q l q3  1 - q5

and

cnT = 2 r [rc.isr+ a cos 3x + 12Cosx +.. (2.3.15)
1ktK(k;) cI . q 1 + q3  1 + q5

7rT
where x =2K(k)

and q =6e [-ir Kk

If cnT is approximated by the first term in the series,

*(T) can be easily determined.
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2,3 1 The Reaonse to a 1requency R&aa Mdulated Sina I
If eG( ) - I (the case of a frequency ramp), the com-

plete solution is

O(T) : ± 2 sin (' "nT) (2.3.16)

)cn-r (1-- kR)F'(1 + ta) 2+ fLI con~

qm 7@ 2K tan 2KH

(22- 'T tan R+ 4n I cosg i

-(2k2 - l)2B!(1 + t. I cos 
2K

-2 Ln e-( 4- 2 Ln Ice.o-o
, V7( + q) 2K

am!

COSn 1iI - 5 co2 2

where 0 W A < K (k')

It is seen that ks  is a parameter of Eq. (2.3.16). As
the system locks, this parameter decreases, as does the maxi-
mu value of the phase error, ,mx and the maximum frequen-cy error. Therefore, when using zq. (2.3.16), a new set of
initial conditions mst be chosen whenever the phase error

becomes equal to zeo. For example, consider that at time,
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T, , the phase error became zero. Then the frequency error
i

at time, Ti , is n This frequency error can be determin-

ed either by differentiating Eq. (2.3.16), or graphically.

It was found that an estimate of n obtained graphically by

approximating 11n by:

d' m1 (2.3.17)

i
yielded satisfactory results. Knowing fn ' kR can be deter-

mined from the relation:

k 2 n (2.3.18)

when Qi > 0 , co(P') is positive. Oi(r) representing the
n 0 1 i

friction term, always opposes the motion of 0 0('r) (the pendu-

lum term) and is therefore negative. Whenai < 0 0 () isA n  s0

negative, 01(r) is now positive. Thus, the signs preceding

0 and 0 alternate as shown in Eq. (2.3.16). 0'(1) main-
0 2

tains the same sign since it represents the slope of the fre-

quency ramp.

Equation (2.3.16) reduces to the expression obtained

using the simple linearization procedure as the maximum phase

error becomes small. At steady state O(oa) approaches '-a'.

The solution for the case of a frequency ramp modulated

signal is shown in Fig. 2.5. In this example the parameters

chosen were:

a = 0.157 , c = 0.25 , (2.3.19)

and = = 1.6, when O(o) = 0 . (2.3.20)
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FIG. 2.5 A COMPARISON OF THE APPROXIMATE SOLUTIONS USED TO OBTAIN THE
RESPONSE OF THE APC SYSTEM TO A FREQUENCY RAMP MODULATED SIGNAL



An interesting characteristic of the perturbation solution, as

seen in Fig. 2.5 is that not only does the period decrease with

time, T , but the negative half cycle takes longer to complete

than does the preceding positive half cycle. The reason for

this is that on the positive half cycle Omax < M . The co-
2

efficient of friction, c cos , although small, is still

positive. During the negative half cycle, due to the offset

caused by the frequency ramp, the friction term has less ef-

fect on the result. In this example, 10 I> Z , and the

friction term is actually negative over part of the negative

half cycle. Thus, the time.tO-coupj.ete the negative portion

of the cycle is increased.

As the magnitude of the phase error decreases the per-

turbation technique yields results similar to those obtained

using the simple linear analysis.

Although the perturbation technique yields more accurate

results than the linear analysis it is somewhat more difficult

to use. A simple technique, which takes into account the pos-

sibility of negative damping, has also been investigated. This

is a piecewise-linear analysis and is here described.

2.4 A Piecewise-Linear Solution

A piecewise-linear solution was obtained using the ap-

proximation shown in Fig. 2.6. Using this solution the ef-

fects of various types of frequency modulation were investi-

gated. In addition, the maximum initial frequency error, to

achieve locking, was determined. This result is most impor-

tant when a / 0 , since when a = 0 the APC System will

eventually synchronize to the input signal.

Rewriting Eq. (2.2.1) for convenience,

+4 C cos a + sin -ade (2.2.1)
dr dOS- dT
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and using Fig. 2.6, the piecewise-linear equations becomes

4+ C it a do<0 (2.4~.1)

and

4- f~c ~ 7r FIE' a dem -_7

"dv 7 vv2 d
(2.4.2)

where

Equation (2.4.1) and Eq. (2.4.2) can be normalized. The nor-

malized equations are:

T~ 2 dem <n < '(.43dv 1 dv d " .. (2..3)

and

2 d- , m = - < ( _ 2 ,.4.4,)
dv 1 dv I dv - 2

where

and

a Ja -
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2.4.1 The Response to a Freauency Ramp

Using the case of ramp modulation, a comparison was

made between the results obtained using the perturbation

piecewise-linear, and simple-linear techniques. In this ex-

ample, the parameters chosen were:

a = 0.157, c - 0.25

and

_OI "n 0  1.6, when O(o) - 0

The piecewise-linear solution for this case is:

() = e(cosI • + Qsin - (0.157)

(2.4.5)

and

c 88 r -0 72 v - -) (2 .4 .6 )

The constants, a , a , 0 and p can be evaluated using the

initial conditions and the boundary conditions. The simple-

linear solution for this case is

T

O(T) = e (y con T + y2 sin 7) - 0.157 • (2.47)

A comparison of Eq. (2.4.5) and Eq. (2.4.7) reveals that the

frequency of the piecewise-linear solution is Jif times the

frequency of the simple-linear solution. In addition the solu-

tion obtained using the simple-linear technique has greater dMping
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than the result given by Eq. (2.4.5) for the piecewise-linear

approximation.

These differences are illustrated in Fig. 2.5 which

compares the results obtained using the perturbation, piece-

wise-linear, and the simple-linear solutions. It is clear,

from this figure that the piecewise-linear solution is a bet-

ter approximation of the perturbation solution than the simple

linear solution.

2 .4.2 Initial Conditions Required to Insure Locking

Using Eq. (2.4.4), the necessary and sufficient condi-

tions for an APC System to synchronize (lock) to a frequency

ramp modulated signal can be shown to be:

122(l- 2L)(i - a) , c < < 2 (underdamped)

II-ln1 < F2(%1 - 1)(1 - a) , c - 2 (critically damped)

(li. , > > 2 (overdamped)

L. (2.4.8)

when

* radians

and where

a < 1 . (2.4.9)

The-result obtained using the piecewise-linear solution

Eq. (2.4.8) is compared with the result obtained graphically

from a set of phase portraits 
2 12 in Fig. 2.7. It is seen
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from this figure that when the initial phase error is ---

radians, the maximum frequency error (for locking to occur)

decreases as the normalized damping coefficient, I , increas-

es. This is "ue to the fact that when the phase error, 0 ,

becomes more negative than - radians, the damping force

becomes negative. This negative damping force makes locking

more difficult. However, locking is still possible when the

phase error exceeds - radians.
2

The result obtained using a phase plane analysis is

similar to the result obtained using the piecewise-linear

technique. The approximation of a constant coefficient of

damping in the piecewise-linear analysis results in the dif-

ferences between the two curves. These results should be

contrasted to the result obtained from a simple linear analy-

sis. Using the simple linear analysis, it can be shown that

lockin9 will always occur; a result which is obviously incor-

rect when a / 0. (It is noted however, that the simple linear

analysis is only valid for small phase errors. It should not

be used to discuss locking phenomenon, which requires a know-

ledge of the systems' response when the phase error is large).

2.4.3 The Response to an FM Signal

The piecewise-linear solution can also be used to ob-

tain the response of the APC System to an arbitrary frequency

modulated signal. To illustrate this, consider a sinusoidal-

ly phase modulated signal,

ec(t) - sin (tt -'A sin cmt) .(2.1).

Then

d wn +cos + awn Sin _ 2* sin cmt  (2.4. ll)
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and

csi -@ -A ' M.,. (2.4.12)Q +C on, Oft.,+ o,.,, -A.
aa

The piecewise-linear equations becomes

+v :L d ,O 2 =-, aDM+IA @in T12 , \ - 2_ <

(2.4.13)

and

dv d

(2.4.14)

Equations (2.4.13) and Eq. (2.4.14) are linear and can

easily be solved. If the modulation was not sinusoidal, but

was some periodic function, the phase error;, (t), could be de-

termined using superposition. If (t) is to represent the re-

sult of a demodulation, then 10 j < , and the amplitude of

0(t) must beindependent of wm . Solving Sq. (2.4.13), the

steady state pbase error becomes:

b(t)(steady state ( - ) + [sin Ct + 6 co Co t

(2.4.15)

where

6 _ (2.4.16)
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and

£1 "' a~ *(2. 4.17)

it is seen that if

6 2 > > 1 (2.4.18)
and

62 > > (2.4.19)

the steady state phase error, *(t) , will faithfully repro-

duce the input phase modulation. In this case

O(t) = A sin Wmt . (2.4.20)
steady statem

Using a simple linear analysis the steady state response

of the APC System to a phase modulated signal

ec (t) = sin (w t - A sin %t) (2.4.21)

is

O(t) = 4 ) " in (% t + _s
steady state ) i

(2.4.22)

where

(DM2 6 2(2.4.23)

and

f2-3 (2.4.24)
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Thus, it is seen that similar results are obtained using the

simple linear technique.

In order that the APC System perform as a phase demod-

ulator Eq. (2.4.18) and Eq. (2.4.19) must be satisfied. aqua-

tion (2.4.18) requires that the modulation frequency

% > > (2.4.25)

where V awn is the effective coefficient of integration of

the phase lag filter. Equation (2.4.19) requires that

mm > > wn (2.4.26)

where wn represents the effective coefficient of damping

of the filter

If in steady state operation, O(t) exceeds -- (this oc-

curs if A > j , the phase error 0(t) becomes distorted and

no longer faithfully reproduces the input modulation. Although

Sq. (2.4.20) shows that it is possible for *(t) to be pro-

portional to the modulation, the voltage, ed(O, is proportional

to the sin 0 not 0 . Then

ed(t) =G sin (A sin mt) (2.4.27)

Expanding in a Fourier series, Sq. (2.4.27) becomesa

ed(t) Z 2G:J l (A)sin %t * 20is.J(A)sin 3 wt + ... (2.4.28)

If A > 1 , the error in making the approximation

Id(t) _- 20 J(A)sin coot (2.4.29)

is greater than 10 per cent.
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It is seen from the above results that the APC System

studied can be used as an FM receiver if the modulation in-

dex is small (narrow-band FM). An advantage of this type of

receiver is that it can be used to communicate with an accel-

erating satellite.
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Chapter 3

AM RSPONSS Or AN APC SYSTZU TO NAROW-3AND GAUSSIAN NOISB*

3.1 Summ"ary

In this chapter the response of an APC System to narrow-

band Gaussian noisep is determined. It is shown that the in-

put noise and the phase Jitter present in the voltage con-

trolled oscillator are uncorrelated. It is also shown that

the statistics describing the output of the active phase lag

filter, eo (t), are nonstationary. To determine the statistics

of the difference frequency voltage, ed(t), the output vol-

tage., e0 (t), and the phase jitter, 8,(t), an iteration tech-

nique is employed.

3.2 The Itegation Technique '
1

The iteration technique used in this analysis can be

explained using Fig. 3.1. In order to obtain a first approxi-

mation of the solution, the phase Jitter present in the output

of the VCO is neglected. Then

ev k)- cos )2t . (3.2.1)
V0

The first approximation of the statistics of the difference

frequency voltage, ed(t)can be determined once the statistics

of the noise are specified. Having determined ed (t), the sta-

tistics of e0 (t) can be calculated, since .o(t) and ed(t) are

related by the transfer function of the active phase lag f il-

* Appendix B.
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ter. Since the phase lag filter involves an integration, the

statistics of eojt)will be nonstationary. The first approxi-

mation of the output phase jitter, , (t)is then

t
e) G2 f e (,)d, . (3.2.2)

0 0

Using successive iterations, as illustrated in Fig. 3.2, the

statistics of ed(t), eoi(t) and S t ) can be determined.

3.3 Characterization of the In ut Noise

The results obtained below refer to an input consisting

of narrow-band Gaussian noise. The noise is derived by pass-

ing white Gaussian noise through a single tuned IF filter,

having a center frequency, w , and a bandwidth, a . The

noise emanating from this filter has an.autocorrelation 
func-

tion given by:

- e cos M T (3.3.1)

and an expected value

z(N(t)) = 0 (3.3.2)

The noise, N(t) , can be represented by
s'3

N(t) - x(t)cos ( t - z(t)sin a t (3.3.3)

where

E(x(t)) = B(z(t)) 0:.0(3.3.1)
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The random variables x(t) and z(t) are uncorrelated, and,

-a I1
Rx(T) - RZ(r) - . (3.3.5)

The spectral density of x and z are thent

2
anSx(W) - S2(w) - + OW • (3.3.6)

3.4 The First Iteration

To obtain the first iteration, we assume that there is

no phase Jitter present in the VCO (i.e., On 0). The out-

put voltage of the VCO (Fig. 3.1) is then o

OyO - coos~t .(3.4.1)

0

The output voltage of the multiplier, em (t), is

• (t) - .x(t) + aI (x(t)co 2 a) t - z(t)sin 2 w t).(3.4.2)

The voltage, em (t), is then passed through an RC low-pass

filter. The bandwidth, oo , of this filter is much less than

the second harmonic frequency, 2% . Therefore, in the ex-a
pression obtained for. the difference frequency voltage,

*d (t), the components of em (t) due to the second harmonic,

'a , can be neglected. (In the experimental model a filter

trap in inserted to further reduce the components due to the

second harmonic.) Hence, to a first approximation, the difference

frequency volta4e, Ed(w), is

G

Zd (0) _- X() . (3.4.3)
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Equation (3.4.3) could also have been obtained if we had as-

sumed that the "multiplier" consisted of a multiplier, and an

ideal low-pass filter which has a gain of unity at frequen-

cies below 2W2 , and provides infinite attenuation to all

frequencies at and above the second harmonic. Then the mul-

tiplier output is simply

em (t) = Gxx(t) o (3.4.4)

Equation (3.4-3) immediately follows. Thus, the same result

for the difference frequency voltage (Eq. (3.4.3)) is obtain-

ed whether the second harmonic components are neglected at

the output of the multiplier (yielding Eq. (3.4.4)) or at the

output of the RC low-pass filter (in which case the output of

the multiplier is given by Eq. (3.4.2)). To simplify the al-

gebraic manipulation required, it is found useful to assume

the presence of the ideal low-pass filter, and use Eq. (3.4.4)

as the output of the multiplier rather than Eq. (3.4.2).

Using Eq (3.4.4) it is seen that the first approxima-

tion of the output of the multiplier is Gaussian with mean

zero, has an autocorrelation function

Rem () = G2 2 e (3.4.5)

and a spectral density

G2 C2 aSeW n  (3.4.6)

m
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A first approximation of the spectral density of the differ-

ence frequency voltage is then

Be ((0) W + ( = • (3.47)
d++

Since the bandwidth of the RC filter, co , is much less than

the bandwidth of the IF filter, , q. (3.4.7) can be sim-

plified:

CD2

G2 a a-

(MD) n +o (3.4.8)
1

The autocorrelation function of ed(t), is then:
1

I

R ed (- C9Ina0 349

To a first approximation, ed(t) is stationary. The probability

density of ed(t) is aussian with man zero.

The statistics of eo(t) can be found using the relation,
0

t-Wat

o ° 0 A• ( )d . (3.4.10)
0• O( • 'a

The autocorrelation function of eo(t) is derived in Appendix

B, and is shown to be:
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W 2 ra- Wa. I
RG n as 4~ 2C() Ma ITIReo (t,'r)_ .,2....'..JL2. Cae A

e L - -

I

2wawa

+ /-a\ 1&2 - A + .- (3.4. 1)

This equation clearly illustrates the nonstationary character

of a . If the time of operation is such that

t < < A/d),

Eq. (3.4.11) can be simplified:

_____ 2- e 0  + 2C (a\ +1 (3.4.12)
e~ 0t (DOG2 [u ~ 'w/

Since ed(t) is Gaussian, eo(t) is also Gaussian with mean zero.

The variance of eo(t), is however, an increasing function of

time. (The significance of this result will be shown in

Chapter 4 where the response of an APC System to a frequency

ramp modulated signal embedded in noise is discussed., )

The autocorrelation function of the output phase jitter,

9 2 (t), has also been derived in Appendix B. The autocorrela-

tiIn function is

2G2G202  [ + .. IV~T) at )]-2 (t1¢ G n t [C + C (Uat + Ia') +  t at- + IaI

2 1 L(3.4.13)

where

t < < A/a
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Equation (3 4.13 ) is seen to be nonstationary. Since the

phase jitter, 2 (t) , is the integral of eoit)o it too is Gaus-
I

sian with mean zero.

3.5 The Second Iteration

To obtain a second approximation of the output of the

multiplier, em (t) , the input voltage, ec(t) , and output

voltage, ev (tI , must be multiplied and passed through the

ideal low-pass filter (i.e., second harmonic components are

neglected). Then,

em (t) = G x(t)cos 1 (t) - G z(t)sin 9 (t) (3.5.1)

where
t ,td

0 (t) = -G 2 f ed (,,)d - G wa f td f ed (N)dN (3.5.2)

0 a 0  0 1

and

t < < A/oa  (3.5.3)

Since the difference frequency voltage, ed (t) , is the re-

sponse of an RC low-pass filter to noise, x(t) ,

ed (t) :- 0 0  G f e x()dN • (3.5.4)
1 0

To determine the statistics of em (t) , the expected value

of xG1 and z92  must be evaluated. Referring to Eq.

(3.5.2) and Eq. (3.5.4),and noting that x(t) and z(t) are

uncorrelated, it is seen that
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(ze ) 0 .55)
1

The expected value of xe is
21

t
E(xe ) =- G 2 E(x(t)ed (7})d?21 2o 0

t

- aG2 f dn f dX E(x(t)ed (M)) , (3.5.6)
0 0 1

and the expected value of x(t)ed (X) is
1

E(x(t)ed (X)) = w 0 Gf e 0 V) Zx(t)x(v))dv . (3.5.7)
1 0

But,

- aIt - vi
(x(t)x(V)) = RX( I t - v ) a e (3.5.8)

Utilizing Eq. (3 5.8), Eq. (3.5.7) is easily integrated, and

E(x(t)ed (a)) e -WO e(e 1) (3.5.9)
1

Substituting Eq. (3.5.9) into Eq. (3.5.6) and integrating
yields: 

(3.5.10)aG -, w 0 - )t . W -t,B(x(t)e 2 (t))eaL on -at 1 -- I -

I kOJ )(Oe
+ wa lea- A 0) _ _ t) wa \ t_[ e-Dt



where

a 0

This result is Only Of interest when the RC low-pass f ilter
is in steady state operation. Therefore, letting

we find that

-~~~ 2 (0. (3.5.11)

0

Thus, the input noise and the output phase jitter are uncor-

related, and

E~e m (t)) = 0 *(3.5.12)

2

With the aid of Eq. (3.5.1), Eq. (3.5.5) and Eq. (3.5.11),

the autocorrelation function of e3m (t) becomes:
2

Re (t,) = G 2 B(X(t)X(t + T)Bcse(t)cos e 2 (t + T))

+ G2 E(Z(t)z(t + r))Z(Bin 6 (t)sin 6 (t + )

(3.5.13)



This expression can be simplified, yielding:

-a ITi
Re (tr) = G2 2 e I(cos(8 (t + T) - ( t)))

m2n2 11
(3.5.14)

Tt is shown in Appendix B that given a function f(t) ,

E(cos f(t)) - e _ (3.515)

where f(t) is Gaussian with mean zero. Thus, Eq. (3.5.14)

becomes:

R (tT) n .G 2 2 e 1 ( + a (t+ T) - 2R-

emn2 (3.5.16)

Using the results given in Bq. (3.4.13) for Re (t,r) , the

autocorrelation function of em (t) is: 1
s

G .  e a (3.5.17)

e m  n
2

(This result is derived in Appendix B.)

3.6 Conclusion

The second approximation of the autocorrelation func-

tion of the output of the multiplier 
(Eq. (3.5.17)) yields

the same result as the first approximation 
(Eq. (3.4.5)).

Thus, the statistics obtained for 
the ith  iteration are the

same as the statistics obtained for the 
first iteration.
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Hence,

Red() (T) 0 02
dRe "(T In G (3.6.1)

1

Reo (t,) - Reo (t,r)

(D 02 G2 C 2

O n 0.aLa ,e' + o 2C + t (3.6.2)

and

R (tO) R 9  (tr) (3.6.3)
21 2 1

_ a 2 t[ s + C(Wat + I 1) + Caat)t + r

where

o< < t < <a (3.6.4)0 Oa

In addition, it has been shown that the input and out-
put noise are uncorrelated. Consequently, the APC System re-
sponds to noise as an open loop system (Fig. 3.1), rather
than as a closed loop system.
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Chapter 4

THE RESPONSE OF AN APC SySTEM TO An F4 SIG.hL AND NOISE

4 1 Introduction

An extremely important feature of the APC System is its

ability to synchronize to a signal which is deeply embedded

in noise, even when the signal is frequency modulated. To

clearly demonstrate the operation of this device, the response

of the APC System to a signal and noise is obtained using the

linearization procedure employed by previous investigators. 4" 1

This technique is valid only when the S/N ratio is much

greater than unity and the noise peaks are limited.

It is then attempted to extend these results theoreti-

cally using an iteration technique, as in Chapter 3. Due to

the complexity of the problem, the iterative procedure is not

carried beyond the second iteration and no convergence is

demonstrated. The first iteration, however, is useful in pro-

viding qualitative results illustrating the effect of the sys-

tem parameters on the locking of the APC System to a signal,

even when the S/N ratio is much less than unity.

In the following discussion, it is assumed that the in-

put voltage

ec(t) = S sin 0 1(t) + N(t) . (1.1,1)

The input voltage was generated by passing the incoming RF

signal (and noise) through a narrow-band IF filter. The fil-

ter had a center frequency, WD rad/sec , which is the initial

2
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frequency of the VCO, and a bandwidth, a tad sec. The input

noise is then,

N(t) - x(t)cos w t - z(t)sin w t . (4.1.2)

The input signal is assumed to be unaffected by the IF filter.

Hence#

I I(t) - 021< < a . (4.1.3)

4.2 The Response of a Linearized APC System to an FM

Signal and Noie
4 2

Let us assume the input voltage to be:

0 c(t) - 8 sin(aco2t +i 8 1(t)) + (x(t)cos w 2t - z(t)sin w at)

(4.2.1)

where e 1 (t) represents the phase modulation. If the input

noise is limited and the S/N ratio is meich greater than

unity, Eq. (4.2.1) can be simplifieds*

e (t) - 8 sin(w2 t + e(t) + 1[x(t)cos 01 (t) + z(t)sin 9 (t)])

- S sin(O (t) + u(t)) ,(4.2.2)

where 0 (t) W- at + 0 (t) ,

u(t) x(t)cos (t) + z(t)sin 0 (t)

and Lu(t) I< < S (4.2.3)

* See Appendix C.
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The output of the multiplier, am(t) , is then,

em(t) = G S sin(O (t) - 0(t) - * u(t)) . (4.2.4)

It is implicitly assumed, in Sq. (4.2.4), that the multiplier

consists of a multiplier and an ideal filter, as discussed

in Chapter 3.

Equation (4.2.4) can be linearized if

1 0(t) - 0 (t) - - u(t)l < < 1 radian (4.2.5)

This requirement implies that the system is almost synchro-

nized to the incoming signal, and 0 (t) is perturbed slight-
ly from 0 1 (t), due to the noise, u(t). Noting that

* (t) = 2,t + e2(t)

and

= t + e (t)

Zq. (4.2.4) becomes,

G S(e (t) - e(t)) - G u(t) . (4.2.6)

Using this result, the APC System can be linearized,

as shown in Fig. 4.1. The response of this linearized system

to a signal and noise is then the response to the signal plus

the response to the noise. Therefore,
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e (t) = e2(t) + en (t) (4.2.7)

where 0. (t) is the phase variation of the vcO, due to the
signal's phase modulation, eI(t) e2 (t) is the phase

variation due to the noise, u(t)/S ,

The response of a linearized system to an FM signal

has been discussed in Chapter 2 and Appendix A. The steady

state phase jitter present in the VCO is easily determined

using Fig. 4.1.

(On(U% + J )a

e n n ' " " ' "( ) - • 0( .2 8

l • z+ J co/wo

This equation shows that the linearized system responds as a

closed loop system to the noise, This is a direct result of

the initial assumption that the noise was limited.

Utilizing Eq. (4.2.8), the spectral density of the

phase jitter at the output of the VCO can be obtained if the

spectral density of the input noise is known. Let us assume

that the spectral density of the input phase noise, u(t), is:

Su(I) = V M (4.2.9)

The spectral density of the phase Jitter due 
to noise

is then

S1e (n2) 2 . 1 + 2) '. (4.2.10)

2an ( + A&) + SR +I'
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where a is the bandwidth of the IF filter ,

an

A0 
W nA

and LZ - a W wn

equation (4.2.10) is plotted in Fig. 4.2 using the typical

values

wa - 1 rad/sec

o = 2000. rad/sec

a = 12000n rad/sec
and a% = 400wr rad/sec , and 2000n rad/sec

These results are compared with the spectral density of the

input phase noise. The phase jitter in the output of the

VCO is much less than the phase jitter in the input. In ad-

dition, it is seen from Fig. 4.2 that as 4 increases,a n.
the phase jitter increases. However, if the input signal is

ramp modulated, the slope of the frequency ramp must be less

than 2 (WaWn) for locking to occur. If the slope of the

ramp increases, (Wawn) must be increased. Thus, the amount

of noise reduction that can be obtained by adjusting ,maWn ,

depends directly on the slope of the frequency ramp to be

tracked.

The noise can also be reduced by reducing the normal-

Lzed coefficient of damping, e . Zquation (4.2.10) shows

that an C is decreased, the spectral density of the phase
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jitter also decreases. During locking, c should be criti-

cally damped to assure locking in the shortest possible time.

However, after locking (steady state), e could be reduced

in order to reduce the noise.

4.3 The Iteration Techniaue*

The iterative procedure employed is similar to the

technique used in Chapter 3. The input voltage is

ec (t) - s sin 0 (t) + (x(t)cos wat - z(t)sin t2t) (4.3.1)

The output of the VCO is initially assumed to be noise free.

Thus,

e(t) - cos 0 (t) - cos(wt + 0 (t)) (4.3.2)

The first approximation of the output voltage of the multi-

plier, em (t) , is then
I

em (t) - 1 S sin 0(t) + G us(t) (4.3.3)

where

O(t) 2 t) - 01 W

and

u0 (t) -x(t)cos 2 (t) + z(t)sin 0 t) ' (4.3.4)

* See Appendix D.
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The statistics of the noise are derived in Appendix D.

it is shown that uo(t) is Gaussian distributed with a zero

mean. The autocorrelation function of u0 (t) is

p' .r 0 a (4.3.5)

a result identical to Zq. (3.4.5).

The multiplier voltage, em(t), can be written as:
I

em (t) = em (t) + em (t) , (4.3.6)
1 I1 In

where

em (t) G S sin 0(t), is the response to an
ILS FM signal (Chapter 2),

and

•m (t) G u 0o(t), is the response to narrow-
In band noise.

The first approximation of the output phase of the

VCO is then,

0 (t) = a t + 9 (t) + 0 (t) (4.3.7)2 1  2 IS2n

where

e (t) = a (t), is the output phase due to

an input signal,

and

e (t) is the phase jitter due to noise, (Chapter 3).
2

-60 -



If the output phase of the VCO due to the signal, GI  (t) ,

is much greater than the phase jitter, e (t) , sq. (4.3.7)

can be written as, in

1 (t)- t+ e IO(t) + en(t)in W a t + eR(t)t - 0(t) .

(4.3.8)

When sq. (4.3.8) is valid, the iteration technique appears

to converge. However, in order to rigorously demonstrate

convergence, Eq. (4.3.7) should be used and a second itera-

tion taken. This was not attempted.

Using Eq. (4.3.7), a S/IN ratio of the output phase

can be defined as:

..-. °s(4.3 °9)I e (t)

(output phase) ain

When the output S/N ratio given in Eq. (4.3.9) is much

greater than unity, the approximation made in Eq. (4.3.8) is

valid. We would then expect the system to have a high proba-

bility of locking, since the phase jitter will only act as

a slight perturbation of the output phase. The output phase

e2  (t) can be expressed in terms of the input phase modu-

latlon, since,

0(t) 2 (t) - *1(t) - (wt + a (t)) -(wot + e (t))

0s  (1.3.lo)

Therefore,

geoo(t) = 0(t) + e(t) - tt (4.3.11)
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where

2 1

The normalized standard deviation of the phase Jitter is de-
rived in Appendix Di

20 4()ca + £ T + 4)jj-y (4.3.12)
in

where

a n

The effect of the input S/N ratio and the system
parameters on the output S/N ratio, can be demonstrated
using the following example: Consider a frequency ramp modu-
lated input signal with an amplitude of 10 volts embedded in
noise. The rate of change of the frequency modulation is
400 rad/sec/sec. The APC loop is closed when the initial
phase error is zero, and the initial frequency error is 2P/racy
sec. The system parameters are chosen so that the APC sys-
tem is critically damped. Then,

S -- 10 v

C= 53 X 10 - 3

wa = 1 rad/sec

wn m 425w rad/sec
and

a z= 120007r rad/sec
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using Eq. (2.1.12),

C 2,

a -0.3

0(o) -0

and

AtI 0.6

The normalized response, O(T), to the frequency ramp modulated
signal is thent

O(T) -0.3(e- - 1) + 0.9T e (4.3.13)

Equation (4.3.13) is obtained using the Simple linear tech-
nique (Appendix A), which is valid since,

1 0('0I < 0.3 radians

The normalized output phase, 0 (T), and the standard
deviation of the phase jitter, ag (r), are shown in Fig. 4.3.

It is seen from this figure, and from Eq. (4.3-11) that the
standard deviation of the phase jitter will exceed

9 2 (T) during some period of ti, since S. 0 (t) becomes
zerg when,

9, ('r) - 1 n - O(T) *(4.3.14)

If the standard deviation of the phase jitter is much less

than ZEradians when it exceeds 0. (t)s the system will Prob-
2 0s
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g bly synchronize and remain synchronized to the input signal, If,

however, the standard deviation is much greater than I ra-

dians when it exceeds 2 0o(t), the system will probably not

lock to the signal. Referring to Fig. 4.3, it is seen that

when the input N/S ratio (O/S2/2) is -20 db, the phase

jitter is always much less than 02 (T), except for a very

short period of time. The standard aeviation of the phase

jitter during this time is much less than 1E radians. The
2

probability of the system locking to the input signal seems

to be quite high. This should be compared to the curve show-

ing an input N/S ratio of +20 db. The standard deviation

of the phase jitter is larger than 02 (T), until T = 9.

The standard deviation is then 7 radiani. The probability of

the system locking to the input signal now appears to be

small.

The maximum value of the input N/S ratio possible,

to still achieve locking, ib greatly affected by the choice

of %-aw and the normalized damping factor, c . It is seen
a n

from Eq. (4.3 12) that when v is decreased, the phase

jitter is decreased. However, a lower limit on the value of

wan is set by the slope of the frequency ramp.

The normalized damping factor, C , effects not only

the standard deviation of the phase jitter (Eq. (43.12)),

but the time required for the APC System to reach steady state

with respect to the signal (0 - -sin" a). It is shown in the

next chapter that when the system is critically damped, 
(c - 2),

it can tolerate a larger y/S ratio than if it were under-

damped or overdamped.
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Chapter 5

EXPBRII4NTAL RESULTS

5.1 Discussion of the Experimental Model

An experimental model of the APC System is shown in

Fig. 5.1.

5.1.1 The Phase Detector

The Phase Detector consists of a multiplier, employing

collector modulation, and an RC low-pass filter used to ob-

tain the difference frequency signal, ed(t). A single-tuned

circuit is also used to eliminate the first harmonic distor-

tion from the output of the phase detector. The remaining

distortion had a peak-to-peak amplitude of less than 50 my,

and negligible effect on the results obtained. The amplitude

of the difference frequency signal, ed(t),was measured, and

found to be 0.025 S.

The input signal, ec(t) , is given by

ec(t) = S sin 0(t) . (5.1.1)

The difference frequency signal, ed(t) , can then be written

ass

ed(t) = +0.025 S sin(® - ) 1 0.025 S sin 0(t). (5.1.2)

Thus,

S 0. 025 . (5.1.3)
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5.1.2 The Active Phase Lao Filter

The phase lag filter employs a Philbrick c ho pper

stabilized amplifier with- an open loop lain, A, of
magnitude 30,000. The filter approximates the transfer func-

tion

__F H(p) = - -(51.4)

as long as

t < < A seconds . (5.1.5)
wa

Since wa was always chosen to be less or equal to unity,

the filter is operational for periods of time exceeding one

hour. In the time domain, the filter output, eo(t),becomes,

t
eo(t)= - C G S sin 0-wa G S f sin(?)dA . (5.1.6)

1 0

The minus sign is due to the inversion inherent in the opera-

tional amplifier.

5.1.3 The Voltage Controlled Oscillator (VCO)

An astable multivibrator was used as the VCO. The mul-
tivibrator was employed because of its great versatility. It
was capable of being operated up to a carrier frequency of

200 kcps. The frequency of oscillation, f , of the VCO can

be shown to be

1 (5.1.7)

2RC Ln(l +
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where

V is the collector voltage,

E is the control voltage applied to each bass,

and

RC is the time constant of the aStable multivibrator.

Using a Taylor series expansion,

ff + -Lf . (5.1.8)

The sensitivity of the VCO, a, can be obtained by differen-
tiating Eq. (5.1.7)

V
Uf 2 f2m RC i(-19df + Y 5..9

a

It should be noted that E represents the "DC" control vol-
tage while dE represents the variation of the control vol-
tage and is proportional to e (t). In the experimental model,

the VCO had a time constant,

RC - 30 x 10-6 seconds,

a collector voltage, V = 12v

and a "DC" control voltage, B = 20,

so that the initial frequency of oscillation, f 35 kcps.

The measured sensitivity of the emitter follower-
atable multivibrator combination was about 850 cps/volt,
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using q. (5.1.9) and noting that the emitter follower atten-

uates its input signal (So) , by 4/9 (see Fig. 5.1) the calcu-

lated value obtained was 750 cp/volt. This verifies the

measured value. The sensitivity of the VCO, G , is then
2

G = 1700 r rad/sec/volt . (5.1.10)

The sensitivity (loop gain) of the system,

Wn = G G S = 42.5 w S rad/sec (5.1.11)

5.2 The Response of an APC System to an FM Ramp

5.2. 1 Introduction

A frequency ramp was obtained, using a H-P 200 CD os-
cillator The frequency of the oscillator was controlled by

coupling the tuning shaft of the oscillator to a small, con-

stant speed DC motor. A gear reducing system was used to ob-

tain frequency ramps from 3 cps/sec to 60 cps/sec. Although

the frequency dial on the oscillator is nonlinear, a linear

variation was obtained over a 2-kcps deviation at 35 kcps,

which was the center frequency used in these experiments.

(The total frequency range on the scale is 60 kcps.)

The linearity of the ramp obtained in this manner can

be demonstrated using the APC System. When the system is

locked,

ed = 0.025 S sin =s 0.025 S a . (5.2.1)
(steady state)

The voltage, e (t), is then

eo(t) :WT a - Ia r at + constant
(steady state) (5.2.2)
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Therefore, if the signal is ramp modulated, e (t), should re-

semble Zq. (5.2.2). This is demonstrated in Fig. 5.2, which

is a Sanborn recording of e (t) showing the "steady state"

response of an APC System to an applied frequency ramp modu-

lated signal.

To determine the transient response of the system to an

input signal, the difference frequency voltage, ed(t), was

monitored using the Sanborn recorder. It should be noted that

ed(t) is proportional to sin 0, not to the phase error, 0 .

Figure 5.3 shows the response of a slightly underdampedsys-

tem to a frequency ramp. The slope of the applied frequency

ramp was approximately 15 cps/sec. The signal amplitude, S,
was 20 volts, 10-2, and w = rad/sec. When t < 0

the frequency error was too large for locking to occur and

the system "slipped" in phase. As the frequency error de-

creased, it is seen that the time required for the phase to

slip by 2w increased. When the time, t , became greater

than zero, the system started to lock. The maximum phase

error during the locking cycle exceeded j , causing the ex-

tended maxium shown in Fig. 5.3. This effect can be visual-

ized by referring to the phase plane sketch shown in Fig. 5.4.

When = , the sin 0 = 1; when 0 exceeded ? ,the sin0

became less than unity; and when 0 again became , the
sin 0 again became equal to unity. As the system is slight-

ly underdamped (i.e., < -- it locked with only a slight

overshoot. n

The steady state phase error is proportional to the

slope of the frequency ramp, (sin O(steady state) = -a). This

is seen from Fig. 5.3 as the steady state phase error is not

at zero, but at some negative value. A rough calculation
yielded:

sin 0 -523
(steady state) 7 (5.2.3)
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Thus,

a ~WaWna (4 2 &2.5 7T * 20

1000 rad/sec2 - 16 cp/sec , (5.2.4)

verifying the directly measured value of the ramp (15 cps/sec).

5.2.2 Comparison of Experimental and Theoretical Results

To compare the experimental results with the theoreti-

cal results (obtained using the perturbation, piecewise-linear,

and simple linear techniques shown in Fig. ".), the system
coefficients were chosen to be

c = 0.25 (5.2.5)

and

a 0.157 . (5.2.6)

Choosing a signal strength, S = 10 volts and wa = 1 rad/sec,

a and were calculated&

a, z w na = 33 cpa/sec (5.2.7)

and

5 J= * 6 . 94 Xlo-3 . (5.2.8)
wn

Letting R !- f, C and R become

C . (5.2.9)

-75-



and

R = 6.8 Kn* (5.2.10)2

The difference frequency signal, ed , was recorded for

two cases: that of a frequency ramp with a = 0 , and a fre-

quency ramp with a = 33 cps/sec. The result obtained when

the input signal is unmodulated (C - 0) is shown in Fig. 5.5.

The response shown in the figure is underdamped as expected.

When the phase error exceeded ra2adiana, the time to com-

plete a period of the motion was greater than when the phase7T
error was much less than Z radians. The time per cycle was

approximately 0. 3 sec, when the phase error exceeded j ra-

dians and was approximately 0.2 sec when the phase error was

less than Z radians. When the phase error became small,
2

the system seemed to stop locking, and a continual phase Jit-

ter was present. This phase jitter was inherent in the in-

put signal source. (As astable multivibrator, similar to the

multivibrator used as the VCO, was built and used as the in-

put signal The "phase jitter" was greatly reduced when the

transitorized multivibrator was used.)

When one observes the iocking phenomenon, shown in Fig.

5.5, it becomes apparent that a simple linear solution is ex-

tremely restrictive. Locking begins when the phase error is

much greater than . radians. (This is seen by the dip in
2

the peak of the curve. The dip indicates that ed(= sin 0)

becomes less than unity, and therefore, the phase error, 0 ,

becomes greater than 2 .) During the time that it takes the

maximum phase error to decrease from ir radians to 1 radian,

the simple linear solution is of little value.

The response of the system to a frequency ramp modulat-

ed signal (a %. 33 cps/sc) is shown in Fig. 5.6. The wave-
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form is proportional to the sin 0, not to the phase error,
.*The phase error shown in Fig. 5.7 was calculated using

Fig. 5.6. A comparison is made in Table I between the theo-

retical results, and the experimental results obtained from
Fig. 5.7

TABLE I

Averaged Normalized Time ()m

Per Cycle Average Damping

Phase Error Phase Error

> 1 Rad < 1 Rad Factor

Experimental 10.1 7.9 0.051

Perturbation 7.8 7.4 0.053

Piecewise-
Linear 7.85 7.85 0.08

Simple Linear 6.3 6.3 0.125

-mT0(1) e cos r

a t = 36 t radians

Table I compares the "average normalized time, r , per cycle"

and the "average damping factor" obtained experimentally,
with the theoretically determined values. The "average damp-

ing factor" is calculated by considering the phase error, ,

to be approximated by a damped sinusoid of the form
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-.. cos( = + ) . (5.2.11)

Using the simple linear solution, the response of the
system to a frequency ramp, is

0 2 coM( + *o) - a (5.2.12)

where

€- 0.25

a - 0.157

Therefore, the normalized time per cycle is

T = 27 (5.2.13)

and the average damping factor is,

M = I - 0.125 . (5.2.14)

Using the piecewise-linear solution, the phase error is

e- a (5.2.15)

Vhere

= 0.25

and

a = 0.157

-81-



The normalized time per cycle is then

T = =2i = 7.85 (5.2.16)

and the average damping factor is

7 1) = 0.08. (5.2.17)

The time per cycle was obtained correctly from Fig. 2.5 for

the solution derived using the perturbation technique. The

average damping factor was obtained by calculating the rela-

tive attenuation of the phase error between the positive

peaks shown in this figure. At each peak O(t) is simply

O(T) = e e . (5.2.18)
a

Rough calculations showed that

e(.7) - e = 1.5 (5.2.19)
2

and

-9.2m
0(9.2) = 2 e - - 1 (5.2.20)

2

Therefore,

e7.5m =1.5 (5.2.21)

and

m = 0.053 (5.2.22)
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The experimental results were obtained in a similar manner
from Fig. 5 7 The normalized time, 7 , is

-- rwaw t = 36 t .(5.2.23)

The average damping factor is then calculated:

-36(0)&9)m
0(0.49) = 0 • - 1.28 (5.2.24)

and
-36(0 7)m

0(0.7) = € e = 0.87 . (5.2.25)

Therefore,

7,56m
e = .47 (5.2.26)

and

m = o051 . (5.2.27)

The results given in Table I clearly indicate that the

perturbation technique approximates the experimental results

more closely than the piecewise-linear or the solution ob-

tained using the simple linear approximation. The experimen-

tal and perturbation results would have checked even 
more

precisely if the initial conditions of each would have been

closer. The maximum phase error obtained with the perturba-

tion technique was 1.6 radians, while the uaxum phase error

obtained experimentally was 2 radians. This caused the sl1ht

discrepancies which occurred in the "time per cycle" readings.
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It should be noted, however, that an excellent comparison is

obtained in determining the average damping factor m . Thi&

indicates that the time/cycle does not remain constant since

it is a function of the maximum phase error. The damping

factor, however, does remain fairly constant.

5 3 The APC System as a Phase Demodulator

As mentioned previously the APC System can be used as

an FM demodulator, where the demodulated output is propor-

tional to the input phase modulation. It was shown in Eq.

(2.4 25) and Eq (2 4.26) that in order to obtain a good re-

production of the input modulating signal, the modulating

frequency. wm, had to be greater than CWn and an . To

verify these conditions, which determine the minimum funda-

mental modulation frequency that can be used, a frequency

modulated input signal with an amplitude, S , equal to 30 v ,

was applied to the system. and steady state established. The

resultant loop gain of the system was

Wn '" 1275 r rad/sec

The modulation frequency was reduced until the demodulated

output became noticeably distorted.

Table II compares the experimental and calculated

values of the minimum frequencies for which an undistorted

demodulation was possible, The minimum frequency possible

is seen to be 8 cps and is determined by • As the

damping increases. wn . increases and the Ainimum fundamental

frequency also increases

Photographs were taken to illustrate the operation of

the APC System as a phase demodulator when a square wave fre-

quency modulated input signal is applied. Sketches of these
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photographs are shown in Fig. 5.8. The modulating frequency

used was 110 cps, and the carrier frequency was 35 kcps.

TABLE II

fm(min)
Calculated

(cps)

f I 3 (min)

2l~a~ ~nMeasured
e r2ir 27r (cps)

6.8 x l0"3  2.8 8 15

47 x 10 - 3  20 8 50

820 x 10-3  333 8 700

ma = 1 rad/sec

S - 30 volts

n " 1275 w rad/sec

Figure 5.8a represents the input frequency modulating signal.

The demodulated waveform shown in Fig. 5.8b is the integral

of the square wave input modulation, as the demodulated out-

put is proportional to the phase modulation. The thickness

of the saw-tooth waveform is due to inadequate filtering of

the second, third and higher harmonics of the 35-kcps carrier
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frequency it can be seen from this figure that the APC Sys-

tem is an excellent phase demodulator,

5.4 The Experimental Response of an APC System to

Narrow-Band Gaussian Noise

To determine the response of the APC System to a signal

embedded in noise, the response of the system to narrow-band

Gaussian noise when no signal was present, was first investi-

gated. The theoretical aspect of this investigation was dis-

cussed in Chapter 3. That discussion, and the discussion of

the signal plus noise, relies on the fact that the response

of the system to noise can be analyzed using the iteration

technique. One of the more important results obtained using

this technique was that the system acted as an open loop sys-

tem to the noise. The following discussion describes the ex-

periments performed and clearly shows that the theoretical

model is correct.

5.4.1 The Input Noise

Figure 5.9 illustrates the manner in which the narrow-

band Gaussian noise was obtained. (The APC System used is

shown in Fig. 5. 1. ) The tuned circuit shown in Fig. 5.9 was

adjusted for a resonant frequency of 35 kcps. The resultant

bandwidth was measured and found to be approximately 
6 kcps

The noise leaving the emitter-follower was tested 
for being

Gaussian by comparing the rms noise measured 
using a Ballan-

tine true rms meter, with that obtained 
using a peak detector.

The noise can be written as
"

N(t) y(t)cos(w 2 t + e(t)) (5.4.1)

where N(t) is Gaussian, with a zero mean and a variance 02.
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If the noise is narrowband, y(t) is Rayleigh. A peak

reading meter, such as the HPVTV4, reads

< y(t) > - Lim 1f y(t)dt . (5.4.2)
T- 0(542

Since the probability of a Rayleigh distribution is,

P(y) e -y02 2 (5.4.3)

and since p(y) is stationary, the average value of the Ray-

leigh distribution is given by

< y > e -Y/2ody -_ a (544)
0

which is a well known result.

A graph of the readings obtained using the peak detec-

tor z vs the true rms meter readings (a) over the range
of rms values that were intended for use throughout the ex-
periments, is shown in Fig. 5.10. The slope of the curve
differed by less than 3 per cent from the theoretical value,

J . It should be noted that even with this close agreement,
one cannot say that the noise is definitely Gaussian. It is
conceivable that some other distribution could yield the same

result. However, it was expected that the noise was approxi-

mately Gaussian, and for all intensive purposes this predic-

tion was verified.
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5.4.2 A Comparison of the Theoretically and Experimentally

Determined Rms Noise at ed and e

Using a true rms meter, the relation between the rms
input noise, d and e0  was determined using differentinu nieeris orms

parameters of the phase lag filter. The results of this meas-

urement are shown in Table Z1.

TABLE III

n  e d(rms) e0(rm) e d(rms) e°( )

measured calculated

(volts) (volts) (volts)

6.8 x 10-3  35 .38 2.8 x 10- 3  .35 2.4 x 10 3

47 x 10- 3  35 38 17.5x lo-  .35 17.9 x 10- 3

100 x 10 3  35 .38 40 x 103 .35 38 x 103

-~-3 -3- 3 .38 330x10 .35 312 x 10

820 x 1.035 .38 3 00 0 ±:!

ed (calc) = G

e O  (calc) = C edrms

Same values obtained for all wa between
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Since the statistics of the difference frequency volt-
age, ed , are stationary, the rms noise measured using a true
rms meter is seen to yield the same result as the standard de-
viation calculated using the equation:

e -7 "n  (5.4.5)

rms ed

where

G 0.025

wo = 2w(l000)rad/sec

and a = 2n(6000)rad/sec

Since the statistics of eo are nonstationary, the rms
value of e0  is not the same as its standard deviation. The
measured rms values of e0  were found to be independent of wa"

The rms value of the output voltage was calculated
using the relation

e = ed "(5 14.6)rms erms

This result can be justified by the following argument: The
average value of ed is zero. Since Cd is stationary, the
time average of ed is also zero. Thus,

ed > = Lim f T 1 T )dX (50.7)

d 0 d

If the time is fairly large,

f e()d --- T < ed > = 0 .5.4.

0
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Then eo (T) is,

T
* (T) -" ed(T) - u)a f ed(7)dX .- C ed(T) (5.4.9)

This approximation is valid only when ma is small.

The measured values eo  , and the values calculatedrins

using Eq. (5.4.6) are seen to correspond.

The measurements shown in Table III were made when the

system operated (normally) in the closed loop position, and

again, with the system operating as an open loop system, with

e° disconnected from the VCO. The same values were obtained

in each case for ed and eO . This clearly indicates
n s s rms

that the noise "sees an open loop system.

5.4.3 Verification of the Gaussian Character of •d

To determine the probability distribution of ed I the

voltage was recorded using a Sanborn recorder and 1656 samples

were obtained from the recording over 24 amplitude intervals.

The estimated probability that the noise is below the mth

interval is

mEd) ni (5.4.o)
i=ln

where

E is the difference frequency voltage in the
d th

m interval,

n i is the number of samples present in the

ith  interval,

and

" is the total number of samples recorded.
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The probability that the difference frequency voltage, e,

is less than a specified voltage, Ed , is plotted on proba-

bility paper in Fig. 5.11. The resulting curve approximates

a straight line and therefore, approximates the Gaussian dis-

tribution found theoretically. Table IV shows the probabil-

ity density per interval, I. A change in ed  of approximate-

ly one millivolt was required for a change of one interval.

A x2  "goodness of fit" test5'2 was also performed.

The X2  distribution can be approximated by

2l m i _ - _1
-iT 1] n (5.J4.11)

where

ni  is the number of samples in the i
th interval,

n is the total number of samples,

and

Pi is the actual Gaussian probability density,

as found from a table of Gaussian distributiO
ns . " From

Table IV, it is seen that the expected value of the 
voltage,

Sd , is in the twenty-fifth interval, or

E(I) - 25 (5.4.12)

where I is any amplitude interval. The estimated variance

m I n - (5.14.13)
21  1  (-2I -
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TABLZ IV

Interval (I) ed(m±Ulivolts) Number of samples ni/n(x 102)
per Interval

0-14 0 0

14-15 -10.5 2 .1207729468

15-16 - 9.5 2 .1207729468

16-17 - 8.5 13 .7850241542

17-18 - 7.5 19 1.1473429946

18-19 - 6.5 28 1.6908212552

19-20 - 5.5 61 3.6835748774

20-21 - 4.5 87 5.2536231

21-22 - 3.5 117 7.0652173878

22-23 - 2.5 15 8.756038643

23-24 - 1.5 163 9.8429951642

24-25 - 0.5 191 11.5338164194
25-26 + 0.5 186 11.2318840524

26-27 + 1.5 169 10.2318840524

27-28 * 2.5 144 8.6956521696

28-29 + 3.5 118 7.1256038612

29-30 + 4.5 83 5.0120772922

30-31 + 5.5 58 3.5024154572

31-32 + 6.5 29 1.7512077286

32-33 + 7.5 22 1.3285024148

33-34 + 8.5 9 .5434782606

34-35 + 9.5 6 .3623188404

35-36 +10.5 2 .1207729468

36-37 +11.5 1 .063864734

37-38 +12.5 1 .063864734

38---- -
1656 0.9999999992
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quation (5.414 can be evaluated using Table IV. Then

0- 12274324 (5414

and the estimated standard deviation is

0I -3.50347 . (5.4.15)

Knowing the estimated standard deviation, the probability

density, p1 , was found and X2 calculated.

x 2 10.214 . (5.4.16)

There are 24-amplitude intervals, and, since the vari-

ance was estimated, 23 degrees of freedom. These results in-

dicate that by chance alone, if the probability distribution

is Gaussian, then with a probability of 0.99, the X2 test

would indicate a worse fit than the one actually observed.

It should be noted that the Sanborn recorder has a 3-0

bandpass of about 45 cps. Thus, the recorder itself does a

great deal of filtering of the voltage ed •

5.5 The Ex erimental Res22nse of an bB System to a Fre-

quency amp Modulated Signal and Narrow-Band Gassian

Noise

5.5.1 Introduction

A frequency ramp modulated signal and 
narrow-band Gaus-

sian noise were simultaneously applied 
to the APC System.

The initial frequency error

4(o) = (a 2 - CO (5.5.1)
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was always chosen to be greater than zero, to insure locking

if noise were not present (see Fig. 2.3). During the locking

process it was observed that if the phase error between the

input signal and the output of the voltage controlled oscil-
lator exceeded 1 radians a large percentage of the time,

the system would not synchronize to the incoming signal.

This condition was determined by observing the output voltage

of the multiplier, em , on a high persistance oscilloscope
screen.

5.5.2 The Effect of Limiting on the Response of the APC
System

Two random noise generators were used in this experi-

ment. The output of the first noise generator, when filter-

ed, produced Gaussian noise. The second noise generator pro-

duced limited (clipped) Gaussian noise. It was observed that

when the amplitude of the noise was limited, the rms value

of the noise required to prevent the system from locking, in-

creased considerably beyond the rms value of the noise re-

quired when the noise was not limited*.
4

5.5.3 The Effect of Varying the Parameters. c and a. on

the Response of the ARC System

The effect of varying the filter parameters, e and 'al,

on the performance of an APC System is shown in Fig. 5.12.

These curves were obtained by first adjusting the noise 
to

obtain a particular N/S ratio and then seeing if the system

locked. It the system locked, the noise was increased in

1-volt rms steps until the system locked only part of the

time. The noise was then decreased by 1-volt rms and the

reading taken. (A threshold level of approximately 2-volts

rms seemed to exist. ) The measurements, shown in Fig. 5.12,

were made with a signal amplitude

S = 5 volts, (5.5.2)
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and

Wa "~ rad/sec.

Therefore,

n= 212 " rad/sec (5.5,4)

It is seen that as 'a' increased, the N/S ratio had

to be decreased to still insure locking. When 'at exceeded

1/2, the system was found to be unable to synchronize to the

input signal unless the noise was reduced to zero. Even then,

the system did not lock if the initial conditions were not

adjusted properly (see Fig. 2.4). This result follows iwmdi-

ately from the experimentally observed that the requirement

phase error must be less than 2E most of the time. In

steady state, the phase error due to the signal is,

= sin a . (5.5.5)
0steady state 1

Thus, as ,a' increases 0(steady state) approaches sln

and the maximum value of the noise must be decreased to 
in-

sure locking.

Optimum results were obtained when the normalized damp-

ing factor, c , was adjusted so that the system was critical-

ly damped. When the system was underdamped or overdamped,

large phase errors (due to the signal) resulted over a long

period of time. This increased the probability that the noise

would prevent the system from locking.

These results show that during the locking process the

system should be critically damped. 
After locking, however,

C should be reduced to decrease the variance 
of the phase

jitter, e
2n
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Chapter 6

6.1 Conclusions

The two analytical techniques presented permit the

calculation of the response of an Automatic Phase Control

System to FM signals. The comparison made between the theo-

retical and the experimental results indicate that the per-

turbation and piecewise-linear techniques yield excellent ap-

proximations of the second-order nonlinear differential equa-

tion studied. The perturbation technique yields extremely

good analytical results. However, it can be used only to de-

termine the response of an underdamped system. A piecewise-

linear solution is easier to obtain than the perturbation so-

lution. However, the linearization of the system resultin

a loss in accuracy.

The response of the APC System to noise was obtained

without "linearizing" the system equation, through use of an

iteration technique. It was shown that with an RC low-pass

filter and an active phase lag filter present in the loop,

the system responded to noise as an open looP system. The

noise rejection of this device is greater than that predicted

using a linear analysis. (The response of a linearized APC

System to noise was shown to result in a closed loop system.)

The APC System can synchronize to a frequency ramp

modulated signal, if the slope of the frequency ramp

o < ( aWn) (6.1.1)
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When the signal is embedded in noise, the maximum input N/S

ratio, to permit locking, varied inversely to .. This
a n

expression acts as an effective "bandwidth" of the system.

(The term "bandwidth" is actually a misnomer, since the system

response found is a transient, not a steady state response)

It was shown experimentally that the normalized damp-

ing factor, c , affected the probability of locking to a fre-

quency ramp modulated signal. The critically damped condi-
tion was found to yield optimum results. The underdamped and

overdamped responses required a longer time to lock, thus

decreasing the probability that the system would synchronize

to the incoming signal.

6.2 Suggestions for Future Work

The response of an APC System to an FM signal in the

presence of an interfering signal should be investigated.

Preliminary observations indicated that the system would lock

to the closer of the two signals. It will fall out of lock,

however, if the amplitude of the interfering signal is too

great. The amplitude required to pull the system out of syn-

chronism was found to be proportional to the frequency dif-

ference between the two signals.

The analysis used to determine the response to a sig-

nal and noise, should be extended. The results presented in

this dissertation should be experimentally verified, and an

attempt made to demonstrate convergence of the iteration

technique

The active phase lag filter was used in 
the analysis

presented, as it is used in the majority of 
APC Systems in

operation today. An attempt should be made to find an "op-

timum" filter. In the past the ApC System was linearized,

and the linearized system "optimized." This does not neces-
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sarily imply "optimum" results with regard to the locking

problem. The possibility of using a nonlinear filter instead

of the phase lag filter should be investigated. The use of

a limiter should also be considered.

it is suggested that any theoretical work performed

be supplemented by a great deal of experimental research.
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APPZNDIX A

THE SOLUTION TO THE LINEARIZED MOD.

The second-order nonlinear differential equation to be

analyzed is

+ cooinO -a do " (.l)
.4 !a $in 0

If the phase error

(* (.r) I < < 1 radian, (A.2)

sq. (A 1) can be linearizeds

dr dO + - (A.3)

The solution to this equation is 
well known. For ex-

ample, if

C - 0.25 ,

de (T) .
a - e

d'r 20

( - 0

and

0
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I
the phase error is

T

1.63 0 sin(, + 0.0965) -

In this particular example, the phase error exceeds one radi-
an, causing the result obtained using this technique to be
significantly different from the results obtained using the
perturbation and piecewise-linear techniques (Section 2.4) shwn

in rig. 2.5.
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APPUDIX B

THE USPONSE OF AN APC SYSTIN TO NAMOM-BANp GAUSSIA NOISE

3. 1 The Statistics of the Output Voltage

The output voltage

0ot 0- ed (t) - e fa d (N)dX. (B.1. 1)
1 0

The expected value of eo (t) is

(B.1.2)

S(e30(t ))  3 d (t ))  I A (ed (-A)0

Since

S(ed (t)) = 0 , (i.1.3)

the expected value of the output voltage i

E(e 0 (t)) - 0 . (B.l.I)

The autocorrelation function of e ° (t) is

ite- -(t - X)I (t + A- )dX +

Re  (tr) = IR
a e () + Wa cfe ed

10
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t + Tr - (t + r-

+ % o' • lea(t - X)dW nlS

+ Wa; 4'0R

wa0 0 
R

where

R (u) = .a G ane 0 (I. 1.6)

The substitution of Eq. (B.1.6) into Eq. 'B.1.51 re-

sults in several straightforward integrations. The first

integral becomes:

t Olt - X)te"A Red (t + T - A)dX

0 d1

U~a 4W~ r w +!L
0 G2 , 2 e t [ t I.(,) * .1.7)

SA

The second integral is:

t + T !L-(t + T X
e A Re (t - X)dA

0 d

-m mA(t + -

mf e ARe (t )dX
0 d1I

t + ' e" (t + I _-)1 -

td
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0 _e 0 A

(s.l.8)

The third integral can be evaluated using.5' The double in-

tegral can then be written as

t t + I t td - x 0 t - t + T - x
jdX f d mfdx f d + fdx f d +fIdx J dX

0 0 0 0 -T 0 't a
(B.1.9)

where

x-',-T .

Therefore,

t t + T uea-(2tI T -
f f d Red Axj

0 0 d

Sftdx -a (2t + T - x - (x) 10

0(t [e - !L (2d1 x-2Xoa [(1 Red~

+ I dx f he (X
- 0 d I

- t +T) O

2 G.2'(12 1 (1- ()

2 
A
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Since the RC low-pass filter is assumed to be operating in
steady state,

," 0 < < . (3..12)

In addition,

% a (B C.1.13)

Wo >A

where

A 3 x 104

a- I rad/sec

and

w 2000 n rad/sec0

Using the above approximations (Eq. (B..12)and 
Sq. (B 1.13))

the autocorrelation function of the output 
voltage becomes'

J) ula

WOR (2 [C2 G.'72F1ae+2C -e.Ro 0 0 n 0 (sBA.14)

2)( ., ')
A
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The third integral can be simplified in the following mannert

t + r t V df dv f ftd B(v,t) (.2.7)

O 0 0I I 0
1 0

where

H(V,t) = :

H Vt) mf d f dr1  0 > t
0 0

H(vt) can be evaluated (using Fig. 8.2) in a similar manner

to Sq. (s.1.9). Then

( -% ) - (* - I)e' ° t  (1.2.8)
Wo Wo 0

and

H (v,t) at - - -e 0 --w(e 0  - l)e 0V  (9.2.9)

Equation (B.2.?) can then be evaluateds

t + I t V
f dv fdAfdj Re (- )
0 0 0 d

I ~

= G2 a2 t2 + 2t fr- A. t . H) 1 " )

- e - ot)( -W o[I)] (B.2.10)

-115-



xxv

N 0

'20

x''O

A-1O0- Z-Oos

I. 8.2 GRAPHICAL PROCEDURE USED TO EVALUATE EQUATIONS 8.2.8 AND 8.2.9



The third integral can be simplified in the following Mannert

t + T t V d+)
f dv 0f (A n) . f dv H(v,t) (5.2.7)

where

Ho V ) f Xfd 0 n -

H(v,t) = t 1

H2(V,t) f f dV e 0 A t

0 0

H(v,t) can be evaluated (using rig. B.2) in a similar manner

to Sq. (B.1.9). Then

- W o VWV-(H (v,t) = 2v _17 (1 - 0 - 1 ) 0 t (8.2.8)
IW0 (0 U07

and

/t e-wot 1 wot

H (vt)1- 1 - - - (eo - 1)eW . (B.2.9)
20 o 00

Equation (8.2.7) can then be evaluated:

t + r t V
f dv f dh f dn e (h - n)
o 0 0 dI *1

SG" 2 " a2t2 + 2t I'1-[ _ ((t + I0)
=Q 1 0

( e)(- (B.2.10)
0
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The last integral can be evaluated using the same simplifying
procedurest

t t + TA It + 7 t
f d Idv dX fdj % (v - I) dt ,X)
0 0 0 0 d 3. 0 0

where

£ f dv I dj Re (v - ) < x (3.2.12)
0 0 d 3j =

.T RRA ovId s( - > (B.2.13)

Equation (B.2.12) and Eq. (B.2.13) are similar to H (v,t)
and H (v,t) , given by Eq. (B.2.8) and Eq. (9.2.9). There-
fores

' " G Wn O)"(
O  "

G 2 2 F -oa x n 010  •o
(3.2.15)

The fourth-order integral has, therefore, been reduced to a
second-order integral. This integral can be solved using the
rules of Eq. (B.1.9). The final result is then:

t t TA
Ifdtf dv f dh_ fdlR% (V -l)Oo 0 o 0 d
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C2 [2t3 _ + t-'2 ~t ''
* G~ ~ ~ i-- I,[2 t leOrt)(t~

i a , n  % -% / "

+ e + t 2 ( . 2 . 1 6 )
- t7

The RC filter in assumed to be operating in the steady state,

therefore, we can assume as before that

-Wot

The autocorrelation function of the phase jitter is then:

22

(B.2.17)

where

ca

The phase Jitter results from the integration of 
a

nonstationary Gaussian random process. consequently, it too

is a nonstationary random process and has a Gaussian 
distri-

bution with a zero mean. - Erf(t)]2  -0 ;(t)

B.3 To Prove: B(co f(t . -

If f is normal,

Z(fan) - l35 !'" (2n- l)A(f)2]n (B.3.1)
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Then

con f -1 - + "'" + ( )n 2,.

and

E(cos f) - 1- [Z(f)=2  +iI34zU...
2! 4: ..

+ 1 )n 1. ? • (2n - lrZ(f)2In (B.3.2)

(2n).

-1- -2 + . + (- )n ril]. I In nL
2 22! - " ( ) Ln "

Therefore,

- Rf(t)]2 -02a(t)
E(c f(t) ]) = e a e f (B.3.3)

B.A An Illustrative Example Demonstrating that

-a ITI
Re (t,r) = Re (t,T) = G2 C2 e

2 1

The second approximation to the autocorrelation func-

tion of the output of the multiplier is given by

-Q I -I(o (t) + C1 (t + r)- 2Re (tT)]

Rem (t,)=Gaae n e 21 2)

where

S< <.
_119a
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It is shown in this section that

Cg I> > + t + 028(t + T) -2%. (t '-)) (B. 4. 2)

and therefore,

-. 1
R (t,T) = 00 OR , (s.4.3)

e m n
2

Equation (B.4.2) can.'be -rewritten using, Eq. (2.2.17):

> II>> 1 2 G"2 o 2[(2t. + + C Wa(t' + (t + ll)

+ & (t3 + (t + IT )S) - 2 't - 2C 0)(t 2 + t I )

3 (BAa) (9 t3 + ta II I "(B.4.4)

Equation (9.4.4) is easily simplified. The in*quality then

becomes

CX >> .1 G2 ,G2 o[(2 + 2wt) + (DaR+ (at) T+ 3
Q 2 n 3 . 5

The inequality expressed by sq. (9.&.5) can be written as

f(t, ) T 2 + ( + wat)- - 24 )&at ) < 0.

(s.4.6)
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The inequality

f(to) < < 0 (.4.7)

need only be satisfied when

and

Wa

If If l > , zq. (B.4.1) is approximately zero, as is

Rein (Y) . It is only of interest to show that

Rem (tS) = Re (tS) (s. 4.8)
M m

2 1

when these values are non-zero.

The following illustrative example clearly illustrates

that the inequality presented in Sq. (9.4.7) is satisfied.

Let

a - 2w(6000)rad/seC

wo - 27r(1000)rad/sec

wa . 1 rad/sec

. 50 X 10-3

o G - 425 7rrad/sec/volt
12

2 W 100 (volt)2
an

and =3X 104 (B.4.9)
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The minimum value of f(tT) with respect to j is

found by differentiating with respect to Tr

-2,r +3~- (C + (oat) -0o (s.14.10)
8 T 0a

Therefore,

0aI

Thus, ira th- range of interest, f(ti,) is an increasing func-

tion of T as shown in Fig. B.3. It is seen from this fig-

ure, that f(t,r) is closest to zero in the interval.

< . <~ (3.14.12)

when

. - . ( .4.13)
a

Thus, letting Tr = , and using Eq. (B.4.9)

f(t,5) = - G=t ;2 n= " O)a  (B.4.14)

After the APC System has been in operation 
for one-half hour

(which is an extremely long time)

f (1800,5) I -1860 ( < 0 - (B.4-15)
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Therefore, to all intensand purposes, we have shw that

R (t., ) 2. %* (t, 1) -G' cy 2e (B. 4. 16)
e m aI nl

2

when

and

Oa



APPENDIX C

TA RESPONSE OF A ]LNEARIZE A S
TO AN FM SIGNAL AnD NOISE

The input voltage to the APC System is,

e(t) - S sin 0(t) + N(t) (C.1)

where

Wt wt + (t)

and

6 (t) is the phase modulation

The additive noise, N(t) , is narrow-band Gaussian nois%
and can be written as:

N(t) = x(t)cos w t - z(t)sin w t = C(t)sin(w t + 'n (t)) (C.2)

where, x and z are independent Gaussian Xandom variables

(see Chapter 3, Sec. 3), C(t) is Rayleigh distributed, and

*n(t) is a uniformly distributed phase angle having a proba-

bility density,

r((,)27

elsewhere
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The input voltage can then be written am,

at(t) a S sin( t + e1 (t)) + C(t)sn(w t + n(t))

= cC(t)sin ( t +* c(t)) . (c.3)

Ec (t) and c ( t) are easily determined using the phasor,
diagram shown in Fig. C.l. Then

z2(t) _ S2 + 2 + 2 0coo(* (t) - 9(t)]

and

-1 Ct~si( n~) - (t))
*c(t) 9 e (t) + tan 1 ($ +C(t)COs(*n(t) - O(t))j (c.5)

If the noise is limited so that

IC(t) < < S

(which requires a large SIN ratio),

zc(t) = S (c.6)
and

(t) Z e (t) + sin(*n W - e (M)) (C.7)

Utilizing Eq. (C.2), it is seen that

C(t)sin(- e 1(t) + #n(t)) a x(t)cos 0 (t) + z(t)sin e (t)

(c.8)
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f u(t) a x(t)coS o (t) + z(t)sin e (t) (c.9)

then Eq. (C.7) becomes

a (t) + * u(t) . (c.l0)

Therefore, the input voltage

ec(t) a S sin(wat + 0 (t) + 1 ult)) , S sin(O (t) + * u(t)).

(c.ni)

The statistics of u(t) are easily determined.

z(u(t)) - 0

and

R u(t,,) R,(?)cos(0 (t + T) -

(7 e coo (C.12)

The input signal was originally passed through an IF

filter having a center frequency, wD , and a bandwidth, e.

The maximum frequency of the modulating signal is assumed to

be much less than a . Therefore,

dO (c.13)
dt

Equation (C.10) is only of interest 
when

< (c.1)I

The autocorrelation function of u(t) is thenSt

-a Ii (C.15)

n
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APPENDIX D

T2l RESPONSE OF M APC SYS=TM TO AN FM SIgMNL AND NOIS-

D.1 The Iteration Techlnique

The input voltage to the APC System is

e C(t) - S sin 0 (t) + 1(t) . (D.l.1)

The noise is narrow-band Gaussian noise and can be written as,

N(t) = x(t)cos w t - z(t)sin w t . (D.l.2)

The output phase of the VCO is initially assumed to be

noise free. Thus,

ev (t) -cos 0 (t) - cos(Wt + 0(t)) (D.1.3)

The first approximation of the output voltage of the multi-

plier, em (t) , is then,

emI(t) - G s sin( 2(t) - ()

+ G (x(t)cos a (t) + z(t)sin e 2(t)). (D.1.4 )

20 o

Letting,

29 (t)-
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and u (t) - x(t)cos 0 (t) + Z(t)sin (t)
09

te multiplih: voltage,

• m 3.(t) - G 1 8 sin 0 + az ILUo(t ) .(9.i.6)

D.l.1 he Statistics of uo(t)

The expected value of u0 (t) is:

B(uo(t)) - E(x(t))co, 0 (t) + B(,(t))sin a (t) .0. (D.1.7)0o

The probability density of u (t) is determined by evaluating

its momentsa

Z(ua(t)) - B(xa)co02 e (t) + (za)sin, 0 (t) . (D.l.8)
0205 208

However,

3(x2) - ((1) - .9)

Therefore,

a 2 ,, 2 (D.. 10)

Similarly,

z(u4) - 3 o04

0 x
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and

-( ) " 1.3 .. (2n - 1)o2 (.1.12)

Odd order moments are obviously zero. Thus, u0 (t) is Gaus-

sian distributed.

The autocorrelation function of uo(t) is

RU0 (t,'r) . Z(uo(t)uo(t + .t))

. B(x(t)x(t + r))cos 0 (t)cos 0 (t + 1)

o R(z(t)z(t +,T))sin0 (t)sin 9 (t + 1), (D.1.13)ZOI  20I

since

B(xa) - 0 , (D.1.14)

Noting that

Z(X(t)x(t + T)) = E(Z(t)z(t + 7 = n (D.1.15)

Eq. (D.113) becomes,

2 e cos(eG(t + 8) - t) (D.1.16)RUo 0 n)20 an 0 s

When T > 5/a

R u Ct -) 1 3 (D.1--I )
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When <

Ru0 (tr) = c2 a Cos (D.l.18)

The instantaneous frequency of the response of the VCO to a

signal is

(t) - w. + 9 (t) . (D.1.19)
2 
0  a 0

The frequency 02 (t) , is always much less than the bandwidthOs

of the RC low-pass filter. This requirement insures that the

frequency of the input signal is not affected by the RC low-

pass filter. Then,

1 e (t) ( < < W . (D.1.20)

However,

W% < a (a.1.21)

(a is the bandwidth of the IF filter). Therefore,

(9 (t))T < < I radian * (..22)
s

The autocorrelation function of 
uo(t) is,

-u I(1  (D.1.23)a o(t,r) : •

-n
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which is the same as the result obtained from an analysis of
noise alone.

D.1.2 The First Iteration

The output of the multiplier is composed of two terms,the first due to the response of the system to an vx signal
(Chapter 2), and the second due to the response of the systemto noise (Chapter 3). The first approximation of the output
phase, 0,,(t) , also consists of two terms:

2 e (t) e (t) (D.1.24)
218

n

where a,,Ct) 2 , is the output phase when a signal
O (0)is applied to the system, and 82 n(t) is the result obtain-

ed from an analysis of noise alone (Chapter 3).
The second approximation of the output of the multi-

plier is then

em (t) - G S sin(O(t) + e (t)) + G u (t) (D.1.25)2. 1

where

u (t) = x(t)cos 2 (t) + z(t)sin 9 (t) (D.1.26)1 1 21

The first term in Eq. (D.1.25) shows that there is a phase
Jitter superimposed on the phase error, . The second term
in the expression is due to noise.

D.l.3 The Statistics of uMtO

The expected value of u (t) is
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S(U1 (t)) - a [x(t)cos(e (t) + 9 (t))

+ 3 [Z(t).Lno(e t) +. (t))j (D.1.27)

However, from Eq. (3.5.5) and Zq. (3.5.6),

S(x ).. 2( 0n . (D.1.28)

Therefore,

z(u (t)) - 0 . (D.1.29)

The autocorrelation function of u (t) is

RU (tS') . = 2 0 [cone (t + T) - a ] (D.1-30)

But,

cosCO (t + T)- e (t)) (D.1.31)

= cos(e 2  (t + t) - e (t) + 2 (t + t) - e (t))
21 21 am

Therefore,

B [cOu(6 (t + T) 8 2(t))]  (D 1.32)

3 [Con(0 (t + ) - 1n (t))] cos( 2(t + )- e(t) +
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- I s [s n ( O i (t + T ) nsi(n))]2(G a (t + -) 0 i t)

n n55

Referring to Eq. (3.5.15), Eq. (3.5.16) and Eq. (3.5.17),

Eq. (D.1.30) becomes,

RU (t,T) 2L 02 I°o

Thus, the statistics of u,(t) are the same as the statis-
tics of uo(t)

The iterative procedure was not continued beyond this

point.

D.2 The Standard Deviation of the Phase Jitter, ce  (t)
Ri•n

The standard deviation, a. (t), is given by Eq.

(3.4.13):

22 G 20 2 W2 t 2 \C ':+ (D.2.1)
o0  (t) I &--a t [ [2 (a t ) + a

When a signal and noise are present, this expression can be

normalized using the relations:

1n G 2 S rad/sec ,(D.2.2
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0 (D.23)

and

Then,

, Fc4%)T~ 0 W)

('r)L (n8'r(2+ T+ ) nD26

02 2

+T

(D. 2. 5)

The variance of the phiae jitter

2 ( ) % n 0 2
a 2 n E + CTr + d (D.2.6)

is proportional to the "effective system bandwidth," /7w n

the input N/S ratio, a:/S2/2 , the normalized damping fac-
tor, c , and the normalized time, I
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